$\begin{array}{lllllllll}\text { B } & \mathbf{B} & \mathbf{B}\end{array}$

CALCULUS AB
SECTION I, Part B
Time- 50 minutes
Number of questions- $\mathbf{1 7}$

A GRAPHING CALCULATOR IS REQUIRED FOR SOME QUESTIONS ON THIS PART OF THE EXAM.

Directions: Solve each of the following problems, using the available space for scratch work. After examining the form of the choices, decide which is the best of the choices given and place the letter of your choice in the corresponding box on the student answer sheet. Do not spend too much time on any one problem.

In this exam:

(1) The exact numerical value of the correct answer does not always appear among the choices given. When this happens, select from among the choices the number that best approximates the exact numerical value.
(2) Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.
(3) The inverse of a trigonometric function f may be indicated using the inverse function notation f^{-1} or with the prefix "arc" (e.g., $\sin ^{-1} x=\arcsin x$).
$\begin{array}{lllllllll}\mathbf{B} & \mathbf{B} & \mathbf{B}\end{array}$
76. A particle moves along the x-axis so that at any time $t \geq 0$ its velocity is given by $v(t)=t^{2} \ln (t+2)$. What is the acceleration of the particle at time $t=6$?
(A) 1.500
(B) 20.453
(C) 29.453
(D) 74.860
(E) 133.417
77. If $\int_{0}^{3} f(x) d x=6$ and $\int_{3}^{5} f(x) d x=4$, then $\int_{0}^{5}(3+2 f(x)) d x=$
(A) 10
(B) 20
(C) 23
(D) 35
(E) 50
$\begin{array}{lllllllll}\mathbf{B} & \mathbf{B} & \mathbf{B}\end{array}$
78. For $t \geq 0$ hours, H is a differentiable function of t that gives the temperature, in degrees Celsius, at an Arctic weather station. Which of the following is the best interpretation of $\mathrm{H}^{\prime}(24)$?
(A) The change in temperature during the first day
(B) The change in temperature during the 24th hour
(C) The average rate at which the temperature changed during the 24th hour
(D) The rate at which the temperature is changing during the first day
(E) The rate at which the temperature is changing at the end of the 24 th hour
79. A spherical tank contains 81.637 gallons of water at time $t=0$ minutes. For the next 6 minutes, water flows out of the tank at the rate of $9 \sin (\sqrt{t+1})$ gallons per minute. How many gallons of water are in the tank at the end of the 6 minutes?
(A) 36.606
(B) 45.031
(C) 68.858
(D) 77.355
(E) 126.668

B

80. A left Riemann sum, a right Riemann sum, and a trapezoidal sum are used to approximate the value of $\int_{0}^{1} f(x) d x$, each using the same number of subintervals. The graph of the function f is shown in the figure above. Which of the sums give an underestimate of the value of $\int_{0}^{1} f(x) d x$?
I. Left sum
II. Right sum
III. Trapezoidal sum
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) II and III only

$\begin{array}{lllllllll}\mathbf{B} & \mathbf{B} & \mathbf{B}\end{array}$

81. The first derivative of the function f is given by $f^{\prime}(x)=x-4 e^{-\sin (2 x)}$. How many points of inflection does the graph of f have on the interval $0<x<2 \pi$?
(A) Three
(B) Four
(C) Five
(D) Six
(E) Seven
82. If f is a continuous function on the closed interval $[a, b]$, which of the following must be true?
(A) There is a number c in the open interval (a, b) such that $f(c)=0$.
(B) There is a number c in the open interval (a, b) such that $f(a)<f(c)<f(b)$.
(C) There is a number c in the closed interval $[a, b]$ such that $f(c) \geq f(x)$ for all x in $[a, b]$.
(D) There is a number c in the open interval (a, b) such that $f^{\prime}(c)=0$.
(E) There is a number c in the open interval (a, b) such that $f^{\prime}(c)=\frac{f(b)-f(a)}{b-a}$.

x	2.5	2.8	3.0	3.1
$f(x)$	31.25	39.20	45	48.05

83. The function f is differentiable and has values as shown in the table above. Both f and f^{\prime} are strictly increasing on the interval $0 \leq x \leq 5$. Which of the following could be the value of $f^{\prime}(3)$?
(A) 20
(B) 27.5
(C) 29
(D) 30
(E) 30.5

84. The graph of f^{\prime}, the derivative of the function f, is shown above. On which of the following intervals is f decreasing?
(A) $[2,4]$ only
(B) $[3,5]$ only
(C) $[0,1]$ and $[3,5]$
(D) $[2,4]$ and $[6,7]$
(E) $[0,2]$ and $[4,6]$
$\begin{array}{lllllllll}\text { B } & \mathbf{B} & \mathbf{B}\end{array}$

85. The base of a loudspeaker is determined by the two curves $y=\frac{x^{2}}{10}$ and $y=-\frac{x^{2}}{10}$ for $1 \leq x \leq 4$, as shown in the figure above. For this loudspeaker, the cross sections perpendicular to the x-axis are squares. What is the volume of the loudspeaker, in cubic units?
(A) 2.046
(B) 4.092
(C) 4.200
(D) 8.184
(E) 25.711
$\begin{array}{lllllllll}\mathbf{B} & \mathbf{B} & \mathbf{B}\end{array}$

x	3	4	5	6	7
$f(x)$	20	17	12	16	20

86. The function f is continuous and differentiable on the closed interval $[3,7]$. The table above gives selected values of f on this interval. Which of the following statements must be true?
I. The minimum value of f on $[3,7]$ is 12 .
II. There exists c, for $3<c<7$, such that $f^{\prime}(c)=0$.
III. $f^{\prime}(x)>0$ for $5<x<7$.
(A) I only
(B) II only
(C) III only
(D) I and III only
(E) I, II, and III

87. The figure above shows the graph of f^{\prime}, the derivative of the function f, on the open interval $-7<x<7$. If f^{\prime} has four zeros on $-7<x<7$, how many relative maxima does f have on $-7<x<7$?
(A) One
(B) Two
(C) Three
(D) Four
(E) Five
88. The rate at which water is sprayed on a field of vegetables is given by $R(t)=2 \sqrt{1+5 t^{3}}$, where t is in minutes and $R(t)$ is in gallons per minute. During the time interval $0 \leq t \leq 4$, what is the average rate of water flow, in gallons per minute?
(A) 8.458
(B) 13.395
(C) 14.691
(D) 18.916
(E) 35.833
$\begin{array}{lllllllll}\mathbf{B} & \mathbf{B} & \mathbf{B}\end{array}$

x	$f(x)$	$f^{\prime}(x)$	$g(x)$	$g^{\prime}(x)$
1	3	-2	-3	4

89. The table above gives values of the differentiable functions f and g and their derivatives at $x=1$. If $h(x)=(2 f(x)+3)(1+g(x))$, then $h^{\prime}(1)=$
(A) -28
(B) -16
(C) 40
(D) 44
(E) 47
90. The functions f and g are differentiable, and $f(g(x))=x$ for all x. If $f(3)=8$ and $f^{\prime}(3)=9$, what are the values of $g(8)$ and $g^{\prime}(8)$?
(A) $g(8)=\frac{1}{3}$ and $g^{\prime}(8)=-\frac{1}{9}$
(B) $g(8)=\frac{1}{3}$ and $g^{\prime}(8)=\frac{1}{9}$
(C) $g(8)=3$ and $g^{\prime}(8)=-9$
(D) $g(8)=3$ and $g^{\prime}(8)=-\frac{1}{9}$
(E) $g(8)=3$ and $g^{\prime}(8)=\frac{1}{9}$

$\begin{array}{lllllllll}\mathbf{B} & \mathbf{B} & \mathbf{B}\end{array}$

91. A particle moves along the x-axis so that its velocity at any time $t \geq 0$ is given by $v(t)=5 t e^{-t}-1$. At $t=0$, the particle is at position $x=1$. What is the total distance traveled by the particle from $t=0$ to $t=4$?
(A) 0.366
(B) 0.542
(C) 1.542
(D) 1.821
(E) 2.821
92. Let f be the function with first derivative defined by $f^{\prime}(x)=\sin \left(x^{3}\right)$ for $0 \leq x \leq 2$. At what value of x does f attain its maximum value on the closed interval $0 \leq x \leq 2$?
(A) 0
(B) 1.162
(C) 1.465
(D) 1.845
(E) 2

END OF SECTION I

IF YOU FINISH BEFORE TIME IS CALLED, YOU MAY CHECK YOUR WORK ON PART B ONLY.

DO NOT GO ON TO SECTION II UNTIL YOU ARE TOLD TO DO SO.

Section II

Free-Response Questions

AP ${ }^{\oplus}$ Calculus Instructions for Section II Free-Response Questions

Write clearly and legibly. Cross out any errors you make; erased or crossed-out work will not be graded.
Manage your time carefully. During the timed portion for Part A, work only on the questions in Part A. You are permitted to use your calculator to solve an equation, find the derivative of a function at a point, or calculate the value of a definite integral. However, you must clearly indicate the setup of your question, namely the equation, function, or integral you are using. If you use other built-in features or programs, you must show the mathematical steps necessary to produce your results. During the timed portion for Part B, you may continue to work on the questions in Part A without the use of a calculator.

For each part of Section II, you may wish to look over the questions before starting to work on them. It is not expected that everyone will be able to complete all parts of all questions.

- Show all of your work. Clearly label any functions, graphs, tables, or other objects that you use. Your work will be graded on the correctness and completeness of your methods as well as your answers. Answers without supporting work may not receive credit. Justifications require that you give mathematical (noncalculator) reasons.
- Your work must be expressed in standard mathematical notation rather than calculator syntax. For example, $\int_{1}^{5} x^{2} d x$ may not be written as $\operatorname{fnInt}\left(\mathrm{X}^{2}, \mathrm{X}, 1,5\right)$.
- Unless otherwise specified, answers (numeric or algebraic) need not be simplified. If you use decimal approximations in calculations, your work will be graded on accuracy. Unless otherwise specified, your final answers should be accurate to three places after the decimal point.
- Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers x for which $f(x)$ is a real number.

CALCULUS AB

SECTION II, Part A

Time- $\mathbf{4 5}$ minutes
Number of problems-3

A graphing calculator is required for some problems or parts of problems.

1. The rate at which raw sewage enters a treatment tank is given by $E(t)=850+715 \cos \left(\frac{\pi t^{2}}{9}\right)$ gallons per hour for $0 \leq t \leq 4$ hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per hour. The treatment tank is empty at time $t=0$.
(a) How many gallons of sewage enter the treatment tank during the time interval $0 \leq t \leq 4$? Round your answer to the nearest gallon.
(b) For $0 \leq t \leq 4$, at what time t is the amount of sewage in the treatment tank greatest? To the nearest gallon, what is the maximum amount of sewage in the tank? Justify your answers.
(c) For $0 \leq t \leq 4$, the cost of treating the raw sewage that enters the tank at time t is $(0.15-0.02 t)$ dollars per gallon. To the nearest dollar, what is the total cost of treating all the sewage that enters the tank during the time interval $0 \leq t \leq 4$?

2. Let R and S in the figure above be defined as follows: R is the region in the first and second quadrants bounded by the graphs of $y=3-x^{2}$ and $y=2^{x}$. S is the shaded region in the first quadrant bounded by the two graphs, the x-axis, and the y-axis.
(a) Find the area of S.
(b) Find the volume of the solid generated when R is rotated about the horizontal line $y=-1$.
(c) The region R is the base of a solid. For this solid, each cross section perpendicular to the x-axis is an isosceles right triangle with one leg across the base of the solid. Write, but do not evaluate, an integral expression that gives the volume of the solid.

t (minutes)	0	4	8	12	16
$H(t)\left({ }^{\circ} \mathrm{C}\right)$	65	68	73	80	90

3. The temperature, in degrees Celsius $\left({ }^{\circ} \mathrm{C}\right)$, of an oven being heated is modeled by an increasing differentiable function H of time t, where t is measured in minutes. The table above gives the temperature as recorded every 4 minutes over a 16 -minute period.
(a) Use the data in the table to estimate the instantaneous rate at which the temperature of the oven is changing at time $t=10$. Show the computations that lead to your answer. Indicate units of measure.
(b) Write an integral expression in terms of H for the average temperature of the oven between time $t=0$ and time $t=16$. Estimate the average temperature of the oven using a left Riemann sum with four subintervals of equal length. Show the computations that lead to your answer.
(c) Is your approximation in part (b) an underestimate or an overestimate of the average temperature? Give a reason for your answer.
(d) Are the data in the table consistent with or do they contradict the claim that the temperature of the oven is increasing at an increasing rate? Give a reason for your answer.

END OF PART A OF SECTION II

CALCULUS AB
 SECTION II, Part B
 Time-45 minutes
 Number of problems- 3

No calculator is allowed for these problems.

$$
\text { Graph of } f
$$

4. Let f be the function given by $f(x)=(\ln x)(\sin x)$. The figure above shows the graph of f for $0<x \leq 2 \pi$.

The function g is defined by $g(x)=\int_{1}^{x} f(t) d t$ for $0<x \leq 2 \pi$.
(a) Find $g(1)$ and $g^{\prime}(1)$.
(b) On what intervals, if any, is g increasing? Justify your answer.
(c) For $0<x \leq 2 \pi$, find the value of x at which g has an absolute minimum. Justify your answer.
(d) For $0<x<2 \pi$, is there a value of x at which the graph of g is tangent to the x-axis? Explain why or why not.

5．Consider the differential equation $\frac{d y}{d x}=\frac{x}{y}$ ，where $y \neq 0$ ．
（a）The slope field for the given differential equation is shown below．Sketch the solution curve that passes through the point $(3,-1)$ ，and sketch the solution curve that passes through the point $(1,2)$ ．
（Note：The points $(3,-1)$ and $(1,2)$ are indicated in the figure．）

\へ－ーナーーーノノノノノ
へ－ーーーノノノノ1／
へ－ヤーーノノ111／
\一ーーノノ1／1／1
1
へ－ペノ111／1
$1 \backslash 1111 / 1$
111111110111111
$111111110 \backslash 111111$
11／1／1メーーへへいいいい
1／1ノノノーーーーいいいいい
ノノノノノノーーーー入入入入入入
ノノノノノーーーナーいいいいいい
ノノノノノーーーナーーいいいい

（b）Write an equation for the line tangent to the solution curve that passes through the point $(1,2)$ ．
（c）Find the particular solution $y=f(x)$ to the differential equation with the initial condition $f(3)=-1$ ， and state its domain．

6．Let $g(x)=x e^{-x}+b e^{-x}$ ，where b is a positive constant．
（a）Find $\lim _{x \rightarrow \infty} g(x)$ ．
（b）For what positive value of b does g have an absolute maximum at $x=\frac{2}{3}$ ？Justify your answer．
（c）Find all values of b ，if any，for which the graph of g has a point of inflection on the interval $0<x<\infty$ ． Justify your answer．

STOP

END OF EXAM

